Механическая энергия системы и закон ее сохранения

Категории Законы

Чтобы доказать это, напишем выражение для элементарной работы f — сила, совершающая над телом работу, v — скорость тела. Это дает возможность измерять, энергию, в тех же единицах, какие используются для измерения работы. Потенциальная энергия. Рассмотрим тело имеется в виду материальная точка , находящееся в потенциальном, поле сил. Сопоставим каждой точке поля характеризуемой радиус-вектором r определенное значение некоторой функции U r. Для некоторой исходной точки 0 примем произвольное значение функции равное U0.

I. Механика

Приращение потенциальной энергии брошенного вверх тела происходит за счет убыли его кинетической энергии; при падении тела, приращение кинетической энергии происходит за счет убыли потенциальной энергии, так что полная механическая энергия тела не меняется. Аналогично, если на тело действует сжатая пружина, то она может сообщить телу некоторую скорость, т.

Если на тело, кроме пружины, действует еще и сила тяжести, то хотя при движении тела энергия каждого вида будет изменяться, но сумма потенциальной энергии тяготения, потенциальной энергии пружины и кинетической энергии тела опять-таки будет оставаться постоянной. Энергия может переходить из одного вида в другой, может переходить от одного тела к другому, но общий запас механической энергии остаётся неизменным.

Опыты и теоретические расчеты показывают, что при отсутствии сил трения и при воздействии только сил упругости и тяготения суммарная потенциальная и кинетическая энергия тела или системы тел остается во всех случаях постоянной.

В этом и заключается закон сохранения механической энергии. Докажем закон сохранения энергии в следующем опыте. Стальной шарик, упавший с некоторой высоты на стальную или стеклянную плиту и ударившийся об неё, подскакивает почти на ту же высоту, с которой упал.

Во время движения шарика происходит целый ряд превращений энергии. При падении потенциальная энергия переходит в кинетическую энергию шарика. Когда шарик прикоснется к плите, и он и плита начинают деформироваться. Если рассмотреть кинетическую энергию, то можно сделать вывод, что она превращается в потенциальную энергию упругой деформации шарика и плиты, причем этот процесс продолжается до тех пор, пока шарик не остановится, т.

Затем под действием сил упругости деформированной плиты шарик приобретает скорость, направленную вверх: энергия упругой деформации плиты и шарика превращается в кинетическую энергию шарика.

При дальнейшем движении вверх скорость шарика под действием силы тяжести уменьшается, и кинетическая энергия превращается в потенциальную энергию тяготения. В наивысшей точке шарик обладает снова только потенциальной энергией тяготения. Поскольку можно считать, что шарик поднялся на ту же высоту, с которой он начал падать, потенциальная энергия шарика в начале и в конце описанного процесса одна и та же.

Более, того, в любой момент времени при всех превращениях энергии сумма потенциальной энергии тяготения, потенциальной энергии упругой деформации и кинетической энергии все время остается одной и той же.

Для процесса превращения потенциальной энергии, обусловленной силой тяжести, в кинетическую и обратно при падении и подъеме шарика это было показано простым расчетом. Можно было бы убедиться, что и при превращении кинетической энергии в потенциальную энергию упругой деформации плиты и шарика и затем при обратном процессе превращения этой энергии в кинетическую энергию отскакивающего шарика сумма потенциальной энергии тяготения, энергии упругой деформации и кинетической энергии также остается неизменной, т.

Теперь мы можем объяснить, почему нарушался закон сохранения работы в простой машине, которая деформировалась при передаче работы: дело в том, что работа, затраченная на одном конце машины, частично или полностью затрачивалась на деформацию самой простой машины рычага, веревки и т.

В сумме же переданная работа вместе с энергией деформации оказывается равной затраченной работе. В случае абсолютной жесткости рычага, нерастяжимости веревки и т. Силы трения и закон сохранения механической энергии. Присматриваясь к движению шарика, подпрыгивающего на плите, можно обнаружить, что после каждого удара шарик поднимается на несколько меньшую высоту, чем раньше, т.

Причина заключается в том, что в этом опыте возникают силы трения, сопротивление воздуха, в котором движется шарик, и внутреннее трение в самом материале шарика и плиты. Вообще, при наличии трения закон сохранения механической энергии всегда нарушается и полная энергия тел уменьшается.

За счет этой убыли энергии и совершается работа против сил трения. Например, при падении тела с большой высоты скорость, вследствие действия возрастающих сил сопротивления среды, вскоре становится постоянной; кинетическая энергия тела перестает меняться, но его потенциальная энергия уменьшается.

Работу против силы сопротивления воздуха совершает сила тяжести за счет потенциальной, энергии тела. Хотя при этом и сообщается некоторая кинетическая энергия окружающему воздуху, но она меньше, чем убыль потенциальной энергии тела, и, значит, суммарная механическая энергия убывает.

Работа против сил трения может совершаться и за счет кинетической энергии. Например, при движении лодки, которую оттолкнули от берега пруда, потенциальная энергия лодки остается постоянной, но вследствие сопротивления воды уменьшается скорость движения лодки, т. Подобно этому действуют и силы трения между твердыми телами. Например, скорость, которую приобретает груз, соскальзывающий с наклонной плоскости, а, следовательно, и его кинетическая энергия, меньше той, которую он приобрёл бы в отсутствие трения.

Можно так подобрать угол наклона плоскости, что груз будет скользить равномерно. При этом его потенциальная энергия будет убывать, а кинетическая - оставаться постоянной, и работа против сил трения будет совершаться за счет потенциальной энергии.

В природе все движения за исключением движений в вакууме, например, движений небесных тел сопровождаются трением. Поэтому при таких движениях закон сохранения механической энергии нарушается, и это нарушение происходит всегда в одну сторону - в сторону уменьшения полной энергии.

Превращение механической энергии во внутреннюю энергию. Особенность сил трения состоит, как мы видели, в том, что работа, совершённая против сил трения, не переходит полностью в кинетическую или потенциальную энергию тел; вследствие этого суммарная механическая энергия тел уменьшается.

Однако работа против сил трения не исчезает бесследно. Прежде всего, движение тел при наличия трения ведет к их нагреванию. Мы можем легко обнаружить это, крепко потирая руки или протягивая металлическую полоску между сжимающими ее двумя кусками дерева; полоска даже на ощупь заметно нагревается. Первобытные люди, как известно, добывали огонь быстрым трением сухих кусков дерева друг о друга. Нагревание происходит также при совершении работы против сил внутреннего трения, например, при многократном изгибании проволоки.

Нагревание при движении, связанном с преодолением сил трения, часто бывает очень сильным. Например, при торможении поезда тормозные колодки сильно нагреваются. При спуске корабля со стапелей на воду для уменьшения трения стапеля обильно смазываются, и все же нагревание так велико, что смазка дымится, а иногда даже загорается.

При движении тел в воздухе с небольшими скоростями, например, при движении брошенного камня, сопротивление воздуха невелико, на преодоление сил трения затрачивается небольшая работа, и камень практически не нагревается. Но быстро летящая пуля разогревается значительно сильнее. При больших скоростях реактивных самолетов приходится уже принимать специальные меры для уменьшения нагревания обшивки самолета.

Мелкие метеориты, влетающие с огромными скоростями десятки километров в секунду в атмосферу Земли, испытывают такую большую силу сопротивления среды, что полностью сгорают в атмосфере.

Нагревание в атмосфере искусственного спутника Земли, возвращающегося на Землю, так велико, что на нем приходится устанавливать специальную тепловую защиту.

Кроме нагревания, трущиеся тела могут испытывать и другие изменения. Например, они могут измельчаться, растираться в пыль, может происходить плавление, т. Итак, если движение тел связано с преодолением сил трения, то оно сопровождается двумя явлениями: сумма кинетической и потенциальной энергий всех участвующих в движении тел уменьшается; происходит изменение состояния тел, в частности может происходить нагревание. Это изменение состояния тел происходит всегда таким образом, что в новом состоянии тела могут производить большую работу, чем в исходном.

Так, например, если налить в закрытую с одного конца металлическую трубку немного эфира и, заткнув трубку пробкой, зажать ее между двумя пластинками и привести в быстрое вращение, то эфир испарится и вытолкнет пробку. Значит, в результате работы по преодолению сил трения трубки о пластинки трубка с эфиром пришла в новое состояние, в котором она смогла совершить работу, требующуюся для выталкивания пробки, т.

В исходном состоянии трубка с эфиром не могла совершить эту работу. Таким образом, нагревание тел, равно как и другие изменения, их состояния, сопровождается изменением "запаса" способности этих тел совершать работу.

Мы видим, что "запас работоспособности" зависит, помимо положения тел относительно Земли, помимо их деформации и их скорости, еще и от состояния тел. Значит, помимо потенциальной энергии тяготения и упругости и кинетической энергии тело обладает и энергией, зависящей, от его состояния. Будем называть ее внутренней энергией. Внутренняя энергия тела зависит от его температуры, от того, является ли тело твердым, жидким или газообразным, как велика его поверхность, является ли оно сплошным или мелко раздробленным и т.

В частности, чем температура тела выше, тем больше его внутренняя энергия. Таким образом, хотя при движениях, связанных с преодолением сил трения, механическая энергия систем движущихся тел уменьшается, но зато возрастает их внутренняя энергия. Например, при торможении поезда уменьшение его кинетической энергии сопровождается увеличением внутренней энергии тормозных колодок, бандаж колес, рельсов, окружающего воздуха и т. Все сказанное относится также и к тем случаям, когда силы трения возникают внутри тела, например, при разминании куска воска, при неупругом ударе свинцовых шаров, при перегибании куска проволоки.

Всеобщий характер закона сохранения энергии. Силы трения занимают особое положение в вопросе о законе сохранения механической энергии. Если сил трения нет, то закон сохранения механической энергии соблюдается: полная механическая энергия системы остается постоянной. Если же действуют силы трения, то энергия уже не остается постоянной, а убывает при движении.

Но при этом всегда растет внутренняя энергия. С развитием физики обнаруживались все новые виды энергии: была обнаружена световая энергия, энергия электромагнитных волн, химическая энергия , проявляющаяся при химических реакциях в качестве примера достаточно указать хотя бы на химическую энергию, запасённую во взрывчатых веществах и превращающуюся в механическую и тепловую энергию при взрыве , наконец, была открыта ядерная энергия. Оказалось, что совершаемая над телом работа равна сумме всех видов энергии тела ; работа же, совершаемая некоторым телом над другими телами, равна убыли суммарной энергии данного тела.

Для всех видов энергии оказалось, что возможен переход энергии из одного вида в другой, переход энергии от одного тела к другому, но что при всех таких переходах общая энергия всех видов остаётся все время строго постоянной.

В этом заключается всеобщность закона сохранения энергии. Хотя общее количество энергии остается постоянным, количество полезной для нас энергии может уменьшаться и в действительности постоянно уменьшается. Переход энергии в другую форму может означать переход ее в бесполезную для нас форму. В механике чаще всего это - нагревание окружающей среды, трущихся поверхностей и т. Такие потери не только невыгодны, но и вредно отзываются на самих механизмах; так, во избежание перегревания приходится специально охлаждать трущиеся части механизмов.

Потенциальной энергией материальной точки в данном положении М называется скалярная величина П, равная той работе, которую произведут силы поля при перемещении точки из положения М в нулевое Из определения следует, что потенциальная энергия П зависит от координат х, у, z точки М, т.

Механическая энергия системы тел. Закон сохранения механической энергии

Механическая работа. Закон сохранения механической энергии Мы изучали различные виды энергии, которыми обладают тела или системы тел. При этом было установлено, что кинетическая энергия определяется движением тел и их массой и зависит от механических параметров системы масс тел и их скоростей. Потенциальная энергия системы тел определяется их взаимодействием и также зависит от механических параметров взаимного положения, т. Таким образом, эти виды энергии — кинетическая и потенциальная — определяются механическим состоянием системы тел.

Механическая энергия. Закон изменения (сохранения) механической энергии

Однако оказывается, что это не всегда так, это не всегда "правда". Рассмотрим два простых жизненных примера. Пример первый. Возьмем ручку. Запустим ее в движение по горизонтальному столу. Что мы увидим? Да, правильно — ручка вначале будет двигаться, а в конце концов — остановится. Что получается?

Закон сохранения полной механической энергии в присутствии внешних сил

Законы сохранения в механике основная школа Законы сохранения в механике Импульсом тела или количеством движения называют векторную величину, равную произведению массы тела m на его скорость Импульсом силы называют произведение силы на время ее действия Изменение импульса тела равно импульсу силы или: Это второй закон Ньютона в импульсном представлении. Закон сохранения импульса. В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой: Рис. Закон сохранения импульса на примере столкновения шаров Импульс может сохраняться и в незамкнутой системе. Это происходит в том случае, если равнодействующая всех внешних сил равна нулю, либо время действия этих сил пренебрежимо мало. Абсолютно упругим ударом называется столкновение двух тел, при котором сохраняется механическая энергия системы тел: Если же удар неупругий, то механическая энергия полностью или частично переходит во внутреннюю энергию сталкивающихся тел. Следует подчеркнуть, что в обоих случаях выполняется закон сохранения импульса.

Закон сохранения энергии.

Приращение потенциальной энергии брошенного вверх тела происходит за счет убыли его кинетической энергии; при падении тела, приращение кинетической энергии происходит за счет убыли потенциальной энергии, так что полная механическая энергия тела не меняется. Аналогично, если на тело действует сжатая пружина, то она может сообщить телу некоторую скорость, т. Если на тело, кроме пружины, действует еще и сила тяжести, то хотя при движении тела энергия каждого вида будет изменяться, но сумма потенциальной энергии тяготения, потенциальной энергии пружины и кинетической энергии тела опять-таки будет оставаться постоянной. Энергия может переходить из одного вида в другой, может переходить от одного тела к другому, но общий запас механической энергии остаётся неизменным. Опыты и теоретические расчеты показывают, что при отсутствии сил трения и при воздействии только сил упругости и тяготения суммарная потенциальная и кинетическая энергия тела или системы тел остается во всех случаях постоянной. В этом и заключается закон сохранения механической энергии. Докажем закон сохранения энергии в следующем опыте. Стальной шарик, упавший с некоторой высоты на стальную или стеклянную плиту и ударившийся об неё, подскакивает почти на ту же высоту, с которой упал.

Глоссарий. Физика

К такому же результату мы придем, рассмотрев другие точки траектории тела. Полная механическая энергия замкнутой системы тел, в которой действуют только консервативные силы, остается неизменной при любых взаимодействиях тел системы. Это утверждение является законом сохранения механической энергии.

Зако́н сохране́ния эне́ргии — фундаментальный закон природы, установленный . Закон сохранения механической энергии может быть выведен из второго . внутренней энергии термодинамической системы при переходе её из.

Тема 3. "Законы сохранения в механике".

Механическая система. Закон сохранения импульса механической системы. Механической системой материальных точек или тел называется такая их совокупность, в которой положение или движение каждой точки или тела зависит от положения и движения всех остальных. Материальное абсолютно твердое тело мы также будем рассматривать как систему материальных точек, образующих это тело и связанных между собой так, что расстояния между ними не изменяются, все время остаются постоянными. Классическим примером механической системы является солнечная система, в которой все тела связаны силами взаимного притяжения. Другим примером механической системы может служить любая машина или механизм, в которых все тела связаны шарнирами, стержнями, тросами, ремнями и т. В этом случае на тела системы действуют силы взаимного давления или натяжения, передаваемые через связи. Совокупность тел, между которыми нет никаких сил взаимодействия например, группа летящих в воздухе самолетов , механическую систему не образует.

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной. Это утверждение выражает закон сохранения энергии в механических процессах. Он является следствием законов Ньютона. Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии. Пример применения закона сохранения энергии — нахождение минимальной прочности легкой нерастяжимой нити, удерживающей тело массой m при его вращении в вертикальной плоскости задача Х. Рисунок 1.

Закон сохранения механической энергии. Если тела, составляющие замкнутую механическую систему, взаимодействуют между собой только.

Механическая энергия и ее сохранение Определение Пусть в некоторой системе тел действуют только консервативные силы. Закон сохранения энергии в термодинамике Энергию тела можно изменить, совершая над ним работу. Работа внешней силы есть мера полной энергии тела. Например, некоторая сила деформирует тело. При этом изменяются расстояния между частицами тела, что ведет к изменению внутренней энергии тела. Кроме упругой деформации происходит изменение температуры тела, что тоже говорит об изменении внутренней энергии тела. При деформации совершается работа, она является мерой изменения внутренней энергии тела. Изменение внутренней энергии тела может происходить под действием силы трения, так как трение сопровождается изменением температуры контактирующих поверхностей тел. Работа силы трения может служить мерой измерения внутренней энергии. Кроме работы существует еще один способ изменения энергии тела.

Закон сохранения энергии и момента импульса 4. Закон сохранения энергии 4. Закон сохранения энергии Рассмотрим систему из N материальных точек с массами m1, m2, Предположим, что на точку с номером i действуют: 1 суммарная внутренняя консервативная сила , 2 суммарная внутренняя неконсервативные сила , 3 суммарная внешняя консервативная сила и 4 суммарная внешняя неконсервативная сила. Тогда уравнение движения i-ой точки имеет вид 4. При этом учтем, что Получим Рассмотрим по отдельности каждый член в этом уравнении. В левой части стоит величина 4. Первое слагаемое в правой части 4.